Researchers Uncover the Mysteries of Li-O2 Batteries

2022-10-03 21:30:41 By : Mr. Carl SPO

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

Li-O2 batteries have advanced to become cutting-edge technology due to their high energy density. The production and decomposition of the discharged product solid lithium peroxide (Li2O2) inside the Li-O2 battery have a substantial impact on the battery’s performance.

Image Credit: Immersion Imagery/Shutterstock.com

Previous studies provided little insight into the form and distribution of internal Li2O2, leaving concerns over the pattern and causes of this shift in form and size unresolved.

A carbon-coated anodic aluminum oxide (C-AAO) air electrode with a highly-ordered, array-like structure was recently created by a team under the direction of Prof. Peng Tan from the University of Science and Technology of China (USTC).

The team learned new things about how and why Li-O2 batteries react and die suddenly. The research has been published in the journal Nano Letters.

The study team created a unique C-AAO electrode that breaks effortlessly but maintains its product distribution, allowing Li2O2 measurements across the entire electrode. The scientists identified the cause of the sudden voltage drop and mortality at different current densities using electrochemical impedance spectroscopy (EIS).

According to research, channel diameters limit the formation of toroidal Li2O2 at low currents, which results in electrode blockage.

The distributions and sizes of lithium peroxide on the end surfaces of C-AAO electrodes and inside them. Image Credit: Prof. Peng Tan’s team.

Therefore, a high charge transfer impedance and concentration polarization brought on by electrode blockage are related to the abrupt voltage drop. While at high currents, the abrupt death is attributable to the concentration polarization and less significant charge transfer impedance from the quick electrochemical processes.

The research team also performed a thorough examination of the growth model of Li2O2 on the end surfaces and inside of C-AAO electrodes to determine the mechanism of such reactions.

Three toroidal models have Li2O2 on the end surfaces. The most typical one forms an incomplete ring by “hugging” the wall as it expands. The remaining material either forms nuclei on adjacent Li2O2 surfaces or expands laterally on the surface.

Toroidal Li2O2 inside the electrode is probably going to be covered by its flocculated counterparts as current density increases, showing that Li2O2 is created along the electrode’s surfaces rather than through disproportionation inside channels.

Lithium peroxide (LiO2) in solution disproportionate around Li2O2 particles, covering the surface route and forming an incomplete ring, after which Li2O2 generated at the Li2O2/electrode interface during early growth is related to the surface route. This new growth route was proposed by the team.

In addition to providing answers to long-standing queries about the Li-O2 battery’s machinations, this research also sheds light on future electrode design.

Zhang, Z., et al. (2022) Reacquainting the Sudden-Death and Reaction Routes of Li–O2 Batteries by Ex Situ Observation of Li2O2 Distribution Inside a Highly Ordered Air Electrode. Nano Letters. doi:10.1021/acs.nanolett.2c02516.

Source: https://en.ustc.edu.cn/

Do you have a review, update or anything you would like to add to this news story?

In this interview, AZoM talks to Dr. Barakat from The Reference Lab, Egypt, about their water analysis capabilities, their processes, and how Metrohm instruments play a large part in their success and quality.

Dave Cist, Roger Roberts and Rob Sommerfeldt

In this interview, AZoM talks to Dave Cist, Roger Roberts, and Rob Sommerfeldt from GSSI about the Pavescan RDM, MDM, and their ground penetrating radar (GPR) capabilities. They also discuss how this can aid the asphalt production and laying processes.

Following the Advanced Materials Show 2022, AZoM spoke with Cameron Day from William Blythe about the broad scope of the company and its goals for the future.

The Intelligent Passive Road Sensors (IRS) can accurately detect road temperature, water film height, ice percentage and much more.

The CVD Diamond from Element Six is a high purity synthetic diamond that is used for electronic thermal management.

The Powder Rheology Accessory expands TA Instruments’ Discovery Hybrid Rheometer (DHR) capabilities to powders, enabling characterization of behaviors during storage, dispensing, processing, and end use.

This article provides an end-of-life assessment of lithium-ion batteries, focusing on the recycling of an ever-growing amount of spent Li-Ion batteries in order to work toward a sustainable and circular approach to battery use and reuse.

Corrosion is the degradation of an alloy caused by its exposure to the environment. Corrosion deterioration of metallic alloys exposed to the atmosphere or other adverse conditions is prevented using a variety of techniques.

Due to the ever-increasing demand for energy, the demand for nuclear fuel has also increased, which has further created a significant increase in the requirement for post-irradiation examination (PIE) techniques.

AZoM.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022